The Macroeconomics of Imperfect Capital Markets

Anton Korinek

University of Maryland

Lecture 1: Introduction to the Modern Financial System

Introduction

Why should we care about imperfections in capital markets?

In particular, why should we care about it in macro and international finance?

- Financial markets are at the heart of market economies, coordinating
 - most intertemporal allocations
 - a great deal of intratemporal allocations
- But sometimes they suffer from a "heart attack:"
 - real estate bubble and subprime mortgage crisis
 - emerging market financial crises
 - European debt crisis
 - continuing US credit crunch
 - ...

Social Contract between Banks and the State:

- banking sector relies on the state for support in crisis times
- in return it accepts regulation by the state
- \rightarrow terms of this social contract have recently worsened
- \rightarrow for many countries, biggest sovereign risk is banking system
 - safety nets have expanded considerably
 - there is a time consistency problem in "bailout policy:"
 - talk tough, but act weak

3 Components of Banking Safety Net:

- liquidity insurance
- deposit insurance
- capital insurance

Focus on "Insurable Interest" of the State:

- starting in 1970s:
 - bank balance sheets have expanded tenfold
 - capital and liquidity ratios have fallen significantly
- before 1970s, ROE typically around 10%
- in 2006 it was close to 30%

History of Financial Safety Nets:

- liquidity insurance:
 - started in UK in early 19th century
 - expanded significantly in recent crisis (10 40% of GDP)
- deposit insurance:
 - started in US in 1934
 - over time introduced in many other countries, typically in response to banking crises
- capital insurance:
 - started in US in 1932 (Reconstruction Finance Corporation)
 - commonplace in recent crisis
- \Rightarrow strong ratchet effect (hysteresis)
- \Rightarrow suggests danger of moral hazard

Five Ways for Banks to Exploit Safety Nets:

- I Higher leverage: increase total assets
- 2 Higher trading assets: take on more market risk
- Business line diversification: diversify idiosyncratic risk but enhance exposure to aggregate risk
- High default assets: take on more credit risk (losses bunched in tail)
- Out-of-the-money options: appear to generate "alpha" in good times

Feedback Effects:

- each crisis leads to new bailouts
- new bailouts lead banks to take on even more risk
- $\rightarrow \text{doom loop}$

Two Solutions to Resolve Time-Inconsistency:

- Redesigning the Financial System:
 - Introducing leverage limits (in Europe)
 - Increasing/recalibrating risk weights
 - Rethinking bank capital structure to reduce limited liability:
 - contingent capital
 - depositor preference in bankruptcy
 - Reconsidering industrial structure ("too big to fail")
- Pedesigning the Safety Net:
 - Creating a pre-defined & transparent framework for:
 - liquidity insurance
 - deposit insurance (more risk-sensitivity)
 - capital insurance

Otherwise: Risk expands to exhaust available resources.

The \$100 Billion Question:

- Discusses the external cost of the financial sector to society
- draws analogy to traditional forms of externalities
- analyzes optimal policy responses:
 - taxation (price regulation)
 - prohibition (quantity regulation)

External Costs of the Financial Sector:

- narrowest interpretation: realized fiscal cost (\approx \$100bn in US for recent crisis)
- broader output costs: $\approx 6.5\%$ of world output in 2009 if 25% of these are permanent: \$60tn cost
- implicit fiscal subsidy to banks: captured by "support" vs. "standalone" ratings: \approx \$100bn/year in US

Regulation vs. Prohibition:

• if social costs > private benefits, strong case for prohibition

Haldane: The \$100bn Question (BoE, 2010)

Price Vs. Quantity Regulation: Weitzman (1974)

- assume $MPV = \hat{p} a(q \hat{q} \varepsilon)$, $MSC = \hat{p} + b(q \hat{q})$ and ε is unobservable to policymaker
- optimality requires $q^* = \hat{q} + rac{a}{a+b}arepsilon$
- deadweight loss of deviations is $DWL = \frac{(a+b)(q-q^*)}{2}$
- under optimal price regulation $p = \hat{p}$: $q = \hat{q} + \varepsilon$, $DWL = \frac{b\varepsilon}{2}$

• under optimal quantity regulation
$$q = \hat{q}$$
:
 $p = \hat{p} + a\varepsilon$, $DWL = \frac{a\varepsilon}{2}$

- \rightarrow if a > b (steep private value function), better regulate prices
- \rightarrow if b > a (steep social cost function), better regulate quantities

Historical Examples of Regulation in US:

- McFadden Act of 1927: prohibition of new bank branches across state lines
- Glass-Steagall Act of 1933: separation of commerical and investment banking \rightarrow stability concerns
- both were progressively undermined starting from 1970s, e.g. through shadow banking
- both were lifted in 1990s

Note: regulatory policy followed perceived social cost/benefit tradeoff as in Weitzman (1974)

Haldane: The \$100bn Question (BoE, 2010)

Benefits of Prohibition:

- modularity: greater systemic resilience to (foreseeable) shocks
- robustness to unforeseen events (counterexample Basel II: extremely complex, unrobust)
- less incentives for banks to generate tail risks

Costs of Prohibition:

- economies of scale
- economies of scope

But: empirics suggests that these are exhausted around 5 - 10 m \rightarrow after some threshold, there may be diseconomies of scale

\$100bn may not just be part of the question, it may be the answer