The Macroeconomics of Imperfect Capital Markets

Anton Korinek

University of Maryland

Lecture 12: Capital Controls and Currency Wars

Anton Korinek (University of Maryland)

Imperfect Capital Markets

医下颌 医

Motivation:

- Capital controls and other capital account interventions have significant international spillover effects
- \rightarrow concerns about "global currency wars"

Conflict between two views:

- interventions distort international capital allocation
- Interventions improve efficiency by correcting externalities

A B b 4 B b

A D b 4 A b

Main Questions

- What are the global welfare implications of capital controls and capital account intervention?
- Do we need global "rules of the road" for intervention?

Key Considerations

Key Considerations:

General equilibrium model of international borrowing/lending
 study effects of capital controls and capital account intervention

Investigate different motives for imposing capital controls:

- "real" externalities that depend on the trade balance:
 - endogenous growth effects: learning-by-exporting, learning-by-doing
 - aggregate demand effects at zero lower bound
- "financial" externalities that depend on debt levels
- "monopolistic" terms-of-trade manipulation
- Analyze role for global coordination by comparing
 - Nash equilibrium among national planners (NP)
 - optimum implemented by global planner (GP)

Key Findings:

- Capital controls may create significant spillover effects
- Efficiency of unilateral intervention depends on type of externality:
 - unilateral intervention Pareto efficient for "real" externalities
 - global coordination improves outcomes for "financial" externalities
 - "monopolistic" terms-of-trade manipulation is beggar-thy-neighbor
- Global coordination reduces distortions of imperfect policy tools:
 - imperfect targeting
 - · controls that are costly to impose

Existing literature:

- **Desirability of corrective capital controls:** e.g. Korinek (2007, 2010, 2011), Bianchi (2011), Ostry et al. (2010, 2011), Farhi and Werning (2012), ...
- Terms-of-trade manipulation via distortive capital controls: e.g. Persson and Tabellini (1995), Obstfeld and Rogoff (1996), Costinot et al. (2011), ...
- Global coordination for financial externalities: e.g. Bengui (2011), ...

Model setup:

- $N \ge 2$ countries indexed i = 1, ... N of mass m^i each, $\sum_i m^i = 1$
- infinite discrete time t = 0, 1, ...
- endowments y_t^i
- bond holdings b_t^i where $\sum_i m^i b_t^i = 0$
- Representative consumer in country *i* maximizes

$$V^{i}(b_{t}^{i}) = \max u(c_{t}^{i}) + \beta V^{i}(b_{t+1}^{i})$$

s.t. $c_{t}^{i} + (1 - \tau_{t+1}^{i})b_{t+1}^{i}/R_{t+1} = y_{t}^{i} + b_{t} - T_{t}^{i}$

	$ au_{t+1}^i > 0$	$ au_{t+1}^i < 0$
lenders $b_{t+1}^i > 0$	outflow subsidy	outflow tax
borrowers $b_{t+1}^i < 0$	inflow tax	inflow subsidy

Equilibrium in individual countries:

• Euler equation from $FOC(b_{t+1}^{i})$:

$$(1 - \tau_{t+1}^{i})u'(c_{t}^{i}) = \beta R_{t+1}u'(c_{t+1}^{i})$$

• bond demand
$$b_{t+1}^i(R_{t+1}; \tau_{t+1}^i)$$

• regularity condition delivers $\partial b/\partial R > 0$

General equilibrium:

• sum up to obtain global excess demand for bonds: $B_{t+1}(R_{t+1}; \tau_{t+1}) = \sum_{i=1}^{N} m^i b_{t+1}^i(R_{t+1}; \tau_{t+1}^i)$

• global market clearing: $B_{t+1}(R_{t+1}; \tau_{t+1}) = 0$

4 3 5 4 3 5 5

Proposition (General Equilibrium Effects of Capital Controls)

An increase in the capital control τ^i

- increases bond holdings b_{t+1}^i in country i
- reduces world interest rate R_{t+1}
- diverts capital flows to other countries $j \neq i$
- increases welfare in borrowing countries (b^j_{t+1} < 0) and reduces welfare in lending countries (b^j_{t+1} > 0)

イロト イポト イヨト イヨ

Equilibrium Effects of Capital Controls

Numerical Illustration: changing τ_{t+1}^{i} from a steady state:

Effect on world interest rate:

$$\frac{dR_{t+1}/R}{d\tau_{t+1}^i} = -m^i$$

• Effect on capital flows/GDP in country i:

$$rac{db^i/y^i}{d au^i} = rac{\sigma(1-m^i)}{1+eta} pprox 0.25(1-m^i)$$

• Effect on capital flows/GDP in other country $j \neq i$:

$$\frac{db^{j}/y^{j}}{d\tau^{i}} = \frac{db^{j}/y^{j}}{dR} \cdot \frac{dR}{d\tau^{i}} = \frac{\sigma m^{i}}{1+\beta} \approx -0.25m^{i}$$

Country	GDP ⁱ	$\Delta b^i/R$	$\Delta R/R$
World	\$62,634bn		-1.000%
United States	\$14,447bn	\$28.4bn	-0.231%
China	\$5,739bn	\$13.3bn	-0.092%
Brazil	\$2,089bn	\$5.2bn	-0.033%
Argentina	\$370bn	\$0.9bn	-0.006%

Table: Effects of 1% increase in capital controls

イロト イ理ト イヨト イヨト

Two-Country Example: General Equilibrium Effects

Anton Korinek (University of Maryland)

Two-Country Example: General Equilibrium Effects

Anton Korinek (University of Maryland)

Equivalence result:

Proposition (Equivalence Capital Controls / Reserves)

Any capital controls under open capital accounts can be replicated by a commensurate change in reserves under closed capital accounts.

- planner chooses reserve assets $a_{t+1}^i = b_{t+1}^i(R_{t+1}; \tau_{t+1}^i)$
- note: if capital account is open, reserve accumulation is undone (Ricardian equivalence)

Factor of equivalence:

$$da^i/y^i = rac{\sigma(1-m^i)}{1+eta} \cdot d au^i pprox 0.25(1-m^i) \cdot d au^i$$

Extended model setup:

- tradable and non-tradable endowments $(y_{T,t}^i, y_{N,t}^i)$
- Representative consumer in country i maximizes

$$V(b_t^i) = \max u(c_{T,t}^i, c_{N,t}^i) + \beta V(b_{t+1}^i)$$

s.t. $c_{T,t}^i + p_t c_{N,t}^i + (1 - \tau_{t+1}^i) b_{t+1}^i / R_{t+1} = y_{T,t}^i + p_t y_{N,t}^i + b_t - T_t^i$

• Trade-off tradable/non-tradable consumption from FOC($c_{N,t}^i$):

$$p_t \cdot u_T(c_{T,t}^i, c_{N,t}^i) = u_N(c_{T,t}^i, c_{N,t}^i)$$

ightarrow defines real exchange rate $p_t^i = p(c_{T,t}^i)$ with $\partial p/\partial c_T > 0$

• increase in capital control τ_{t+1}^i depreciates real exchange rate p_t^i

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Real Externalities: depend on trade balance $tb_t^i = b_{t+1}^i / R_{t+1} - b_t^i$:

• growth externalities from learning-by-exporting:

$$\Delta y_{t+1}^i = f(tb_t^i)$$

• growth externalities from learning-by-doing:

$$\Delta A_{t+1}^i = f(tb_t^i)$$

• aggregate demand externality at zero lower bound:

$$\iota^i_{t+1} = rac{(1+\pi^i_{t+1})u'(c^i_t)}{eta u'(c^i_{t+1})} - 1 \geq 0 \quad ext{ where } \quad c^i_t = ilde{y}^i_t - tb^i_t$$

Anton Korinek (University of Maryland)

イロト イ団ト イヨト イヨト

Problem of a National Planner (NP):

- recognize utility $W^i(b^i_t) = u(c^i_t) + x^i(tb^i_t) + V^i(b^i_{t+1})$
- Euler equation of NP:

$$u'\left(\boldsymbol{c}_{t}^{i}\right) - \boldsymbol{x}_{t}^{i\prime}\left(t\boldsymbol{b}_{t}^{i}\right) = \beta \boldsymbol{R}_{t+1}\left[u'\left(\boldsymbol{c}_{t+1}^{i}\right) - \boldsymbol{x}_{t+1}^{i\prime}\left(t\boldsymbol{b}_{t+1}^{i}\right)\right]$$

• can be implemented by setting

$$\tau_{t+1}^{i*} = \frac{x_t^{i\prime}\left(tb_t^{i}\right) - \beta R_{t+1}x_{t+1}^{i\prime}\left(tb_{t+1}^{i}\right)}{u'\left(c_t^{i}\right)}$$

Anton Korinek (University of Maryland)

Generic Externality Model (GP)

Problem of a Global Planner (GP):

global planner maximizes:

$$\max_{\{tb_t^i\}_{i,t}} \sum_t \beta^t \left\{ \sum_i \phi^i m^i \left[u \left(y_t^i - tb_t^i \right) + x^i \left(tb_t^i \right) \right] + \nu_t \sum_i m^i tb_t^i \right\}$$

optimality condition:

$$\phi^{i}\left[\boldsymbol{u}'\left(\boldsymbol{c}_{t}^{i}\right)-\boldsymbol{x}^{i\prime}\left(\boldsymbol{t}\boldsymbol{b}_{t}^{i}\right)\right]=\nu_{t}\quad\forall i$$

• let us pick an arbitrary ν_0 and set

$$\phi^{i} = \nu_{0} / \left[u' \left(c_{0}^{i} \right) - x^{i'} \left(t b_{0}^{i} \right) \right] \forall i$$
$$\nu_{t+1} = \nu_{t} / \left(\beta R_{t+1} \right) \forall t$$

 \rightarrow then NP = GP

A .

Proposition (Correcting Real Externalities)

- A national planner in country i who acts competitively in world markets finds it optimal to correct domestic real externalities via capital controls {\(\tau_{t+1}^i\)}\).
- The Nash equilibrium among national planners is globally Pareto efficient.

Intuition:

- capital controls entail spillover effects to other countries
- BUT: first welfare theorem applies at the national level
- $\rightarrow\,$ global reallocation of capital is the efficient response of the market to changed demand for capital

Real Externalities: Two-Country Example

Real Externalities: Two-Country Example

Anton Korinek (University of Maryland)

Real Externalities: Two-Country Example

Anton Korinek (University of Maryland)

Proposition (Pareto-Improving Capital Controls)

If inflow countries and outflow countries coordinate to control real externalities, capital controls can make everybody better off.

Intuition for Pareto Improvement:

- outflow restrictions reduce global supply of capital
 → push up world interest rate
- inflow restrictions increase global supply of capital
 → push down world interest rate
- the right combination keeps the world interest rate unchanged
- \rightarrow no adverse terms-of-trade effect on other countries

Pareto-Improving Capital Controls

Pareto-Improving Capital Controls

æ

Application: Learning Externalities

Learning-by-Exporting Externalities (see e.g. Rodrik, 2008; Korinek and Serven, 2011):

• assume output growth increases in trade balance *tb_t* at time *t*:

$$y_{t+1}^{i} = y_{t}^{i} + \Delta y_{t+1}^{i} \left(\bar{b}_{t+1}^{i} / R_{t+1} - \bar{b}_{t}^{i} \right)$$

• Euler equation of NP (where $v_{t+1} = \sum_{s=0}^{\infty} \beta^s u' (c_{t+s+1}^i)$):

$$u'\left(c_{t}^{i}\right) = \beta R_{t+1}u'\left(c_{t+1}^{i}\right) + \beta v_{t+1}\Delta y_{t+1}^{i'}\left(tb_{t}^{i}\right)$$

optimal capital control:

$$\tau_{t+1}^{i*} = \frac{\beta v_{t+1} \Delta y_{t+1}^{i\prime} \left(t b_t^i \right)}{u' \left(c_t^i \right)}$$

Arms Race of Capital Controls:

- an increase in externality and control τ^i diverts capital flows from *i*
- another country j may experience larger externalities
- country *j* will also increase its controls τ^j
- this may in turn prompt country *i* to raise τ^i
- \rightarrow this is efficient process of equilibrium adjustment (tatonnement)
- ightarrow not necessarily a sign of inefficiency

o ...

Robustness: results continue to apply if we include

- investment and capital
- nontraded goods and a real exchange rate
- uncertainty

イロト イポト イヨト イヨ

Financial Externalities

Financial Externalities: depend on net asset (debt) position *Example:* frictions due to exogenous financial constraints:

$$rac{b'_{t+1}}{R_{t+1}} \geq -\phi^i_{t+1}$$
 or $b^i_{t+1} \geq -\phi^i_{t+1}$

Proposition (Financial Externalities, National Planner)

A national planner who acts competitively cannot alleviate financial constraints.

Intuition:

- For national planner, constraint is exogenous
 - \rightarrow no way around it

Anton Korinek (University of Maryland)

Imperfect Capital Markets

25/31

Proposition (Financial Externalities, Global Planner)

A global planner who observes a country subject to binding financial constraints can restore the first best.

Intuition:

- A global planner can implement a given real allocation $\{c_t^i, tb_t^i, ...\}$ using a continuum of financial allocations $\{b_{t+1}^i, R_{t+1}\}$
- 2 Every time period, there are N + 1 instruments to meet N targets:

$$tb_{t}^{i} = rac{b_{t+1}^{i}}{R_{t+1}} - b_{t}^{i}$$
 for $i = 1...N$

Limitations: coordination and commitment, set of available instruments, bounds on R_{t+1} , ...

Financial Stability Externalities (Korinek, 2010, 2012; Bianchi, 2011):

• derive from endogenous constraint linked to exchange rate:

$$\frac{b_{t+1}^{i}}{R_{t+1}} \geq -\phi p_{N,t}^{i}(tb_{t}^{i})$$

- if global planner can restore first-best: let's do it!
- otherwise: dependence of exchange rate on trade balance generates pecuniary externalities
- ightarrow then it is efficient for national planners to impose unilateral controls

Monopolistic national planner: internalizes market power over R_{t+1}

global market clearing requires

$$b^{i}(R_{t+1}; \tau_{t+1}^{i}) + B^{-i}(R_{t+1}; \tau_{t+1}^{-i}) = 0$$

• planner internalizes ROW inverse bond demand $R(B_{t+1}^{-i}; \tau_{t+1}^{-i})$

$$\max u \left(y_t^i - b_{t+1}^i / R(-b_{t+1}^i; \tau_{t+1}^{-i}) \right) + \beta V^i(b_{t+1}^i)$$

ightarrow optimal monopolistic capital control: $au_{t+1}^{i} = b_{t+1}^{i} \cdot (-R_{B})/R_{t+1}$

Proposition (Monopolistic Capital Controls)

Monopolistic capital controls that are designed to distort the world interest rate are Pareto inefficient.

Anton Korinek (University of Maryland)

Monopolistic Capital Controls

æ

Monopolistic Capital Controls

Anton Korinek (University of Maryland)

Problem of National Planner:

- assume a convex cost $C(\tau)$ such that $C(0) = C'(0) = 0 < C''(\tau)$
- planner's optimization problem:

$$\max u(c^{i}) + \beta W^{i}(b^{i})$$

s.t. $c^{i} + qb^{i} + C(\tau^{i}) = y^{i}$
 $(1 - \tau^{i})qu'(c^{i}) = \beta V^{i'}(b^{i})$

- optimum implies $0 < |\tau^i| < |\tau^{i,*}|$
- global planner shares the burden of regulatory costs between countries

Note: similar mechanism if there exists a targeting problem

3

Capital Controls and Capital Account Interventions:

- have significant international spillover effects
- global coordination of capital account policies is
 - not necessary if controls offset real domestic externalities
 - powerful to address imperfections in intl. financial markets
 - indispensable if countries manipulate terms-of-trade
 - and -
 - useful to reduce distortions from implementation/targeting problems
- ightarrow important lessons for currency warriors

イロト イ団ト イヨト イヨト