The Macroeconomics of Imperfect Capital Markets

Anton Korinek

University of Maryland

Lecture 14: Sovereign Risk

Intertemporal budget constraint of government:

$$\underbrace{R_b b}_{\text{repayment}} + \underbrace{g}_{\text{spending}} = \underbrace{x}_{\text{taxes}} + \underbrace{b'}_{\text{new borrowing}}$$

- is at the basic level an accounting identity
- is at the center of fierce political debates
- is subject to much "fiscal illusion"
- provides a reality check to fiscal plans

Intertemporal budget constraint of government:

$$\underbrace{R_b b}_{\text{repayment}} + \underbrace{g}_{\text{spending}} = \underbrace{x}_{\text{taxes}} + \underbrace{b'}_{\text{new borrowing}}$$

To ensure the identity holds, government can

- adjust spending
- adjust tax revenue
- adjust new borrowing or
- adjust repayment
 - via repudiation
 - via inflation

Problem of Time-Inconsistency:

- government cannot commit to future policy
 - political pressure
 - democratic process
 (ultimately non-commitment of voters)
- → focus on "time-consistent" equilibria
- → such equilibria may exhibit multiplicity:
 - ullet good equilibrium: repayment is expected o low interest rate
 - ullet bad equilibrium: repudiation is expected o high interest rate

Limited Commitment in Sovereign Borrowing

Main difference to private debt: enforcement mechanism

- Borrowing in countries with good legal institutions:
 - contracts are enforced by government authorities
 - default is incentive-compatible only when borrower has negative net worth
- Borrowing relationships across sovereign nations:
 - no central authority that enforces contracts
 - severe moral hazard problem: incentive to repay much weaker than in domestic borrowing relationship
 - penalties to default are limited to:
 - seizure of external assets (usually very small)
 - exclusion from future borrowing (usually hard to coordinate)
 - sanctions on trade and financial flows (usually inexistant)
 - military invasions (nowadays used almost exclusively for oil)

Reputational Models of Sovereign Debt

Basic assumptions:

- cost of default = loss of reputation, which entails future exclusion from credit markets
- borrowers default whenever it is to their benefit

Main results:

- benefits of default grow in size of debt
- costs of market exclusion depend on output variability
- borrowers can obtain funds up to a credit ceiling
- international borrowing can only be used for intertemporal smoothing

Eaton and Gersovitz (1981): Intuition

Competitive Equilibrium with Potential Repudiation:

- ullet lenders set credit ceiling of \overline{b}
- borrowers have credit demand b*
- equilibrium $b = \min \{\overline{b}, b^*\}$

Credit ceiling depends on:

- value of continuing access to credit markets:
 - level of output
 - growth rate
 - volatility of output
- penalty in case of default:
 - level of retaliatory actions

Model Setup

Notation:

- output $y_t \sim G(y_t)$, borrowing b_t , repayment p_t
- ullet output is not storable o consumption $c_t = y_t + b_t p_t$
- ullet debt due is $d_{t+1}=R\left(b_{t}
 ight)$, e.g. $d_{t+1}=\left(1+r
 ight)b_{t}$ in no-default case
- penalty in case of default is P_t and exclusion from future borrowing (grim trigger strategy)

Behavior of Agents:

- maximize utility max $E\left[\Sigma_t \beta^t U\left(c_t\right)\right]$
- ullet choose $b_t \in \mathcal{B}_t$... set of loan amounts offered
- ullet decide on repayment $p_t \in \{0, d_t\}$

$$V^{D}\left(y_{t}\right) = E\left[\Sigma_{\tau}U\left(y_{\tau}-P_{\tau}\right)\right]$$
 $V^{R}\left(y_{t},d_{t}\right) = \sup_{b_{t}\in\mathcal{B}_{t}}\left\{U\left(y_{t}+b_{t}-d_{t}\right)+\right\}$

Default Decision

Default if and only if

$$V^{D}\left(y_{t}\right) > V^{R}\left(y_{t}, d_{t}\right)$$

Probability of default $\lambda\left(d_{t}\right)=\Pr\left(\left\{ V_{t}^{D}>V_{t}^{R}
ight\}
ight)$

Theorem (Default probability)

The probability of default increases monotonically with debt service obligations

Lending behavior:

- lenders competitive and risk-neutral
- ullet zero profit condition implies repayment function $R^*\left(b_t
 ight)$ s.t.

$$\left\{1-\lambda\left[R^{*}\left(b_{t}\right)\right]\right\}R^{*}\left(b_{t}\right)=\left(1+r\right)b_{t}$$

Equilibrium Under Potential Repudiation

Determination of amount lent:

- ullet Expected repayment to lenders: $\left[1-\lambda\left(d_{t+1}
 ight)
 ight]d_{t+1}$
- ullet Define $\overline{d}_{t+1}=\inf\left\{d:1-\lambda\left(d_{t+1}
 ight)-\lambda'\left(d_{t+1}
 ight)d_{t+1}=0
 ight\}$
- ullet Beyond \overline{d}_{t+1} an increase in loan size reduces expected repayment
- Zero profit condition yields $\overline{b}_t \left(1+r\right) = \left[1-\lambda\left(\overline{d}_{t+1}\right)\right] \overline{d}_{t+1}$ \rightarrow Credit rationing whenever $b_t^* > \overline{b}_t$

Theorem (Loan availability)

The set of available loans is bounded in $B_t = \left[0, \overline{b}_t\right]$ for some $\overline{b}_t < \infty$

Theorem (Loan supply)

The repayment function $R^*(b_t)$ is increasing and convex over $[0, \overline{b}_t]$

Note: follows from increasing $\lambda\left(d_{t}\right)$

Occurance of Rationing

Unconstrained optimal level of borrowing:

$$b_{t}^{*}=\arg\max_{b_{t}}U\left(y_{t}+b_{t}-d_{t}\right)+\beta E\max\left[V^{R}\left(y_{t+1},R^{*}\left(b_{t}\right)\right),V^{D}\left(y_{t+1}\right)\right]$$

Actual level of borrowing:

$$b_t = \min\left\{\overline{b}_t, b_t^*
ight\}$$

Link to Stiglitz-Weiss (1981):

- interest rate acts as an incentive device: probability to repay depends on interest rate
- price cannot efficiently allocate resources and incentive effects together
 - → non-price allocation mechanism occurs: rationing

Deterministic Example of Eaton and Gersovitz (1981)

Basic assumptions:

- ullet output oscillates by $\pm\sigma$ above/below trend
- all international borrowing/lending is to smooth this shock

Observations:

- default never occurs in deterministic model
- depending on discount rate, growth rate, interest rate:
 borrowing in bad periods or saving in good periods
- desired credit b_t^* and credit ceiling \overline{b}_t are higher the greater the standard deviation of the output shock
- credit ceiling rises in size of the default penalty

Critique of Reputational Models of Sovereign Debt

Bulow and Rogoff (AER, 1989a): Sovereign Debt: Is to Forgive to Forget?

Claim: loss of reputation after default does not preclude country from accumulating savings to smooth consumption (e.g. gold, reserves, etc.)

But: country will be subject to a cash-in-advance constraint to protect counterparty from default risk

Basic Intuition: whenever PDV(repayments) > 0,

- country can default
 - invest the saved repayments in contingent assets with same payoff profile to obtain smoothing benefits
 - but save on repayment
- → agent is unambiguously better off

Extenstion to reputation contracts with punishment: default if PDV(repayments) - PDV(punishments) > 0

General Reputation Models

Cole and Kehoe (1997):
Reviving Reputation Models of International Debt

Separate Bulow and Rogoff (1989)'s argument into two:

- good reputation for repayment cannot support sovereign lending
- lending must therefore be supported by sanctions

BUT: one does not necessarily imply the other

Reputation model in Bulow and Rogoff (1989) is "partial":

reputation only linked to borrowing relationship

General model of reputation:

- includes all relationships of a country
- allows for potential spillovers between these relationships
- debt repayment salvages reputation in other relationships, e.g. trade

Cole and Kehoe (1997)

Two kinds of relationships with reputation:

- Transient benefits:
 - net benefits eventually diminish along equilibrium path
 - examples:
 - debt relationship (once we save enough, we don't need it anymore!)
 - access to common pool of exhaustible resources
 - → unique equilibrium: no debt
- Enduring benefits
 - large and long-lasting, for example
 - constant per-period benefits from trade
 - access to stream of innovations
 - → positive level of debt can be supported

Duality:

What is the difference between "reputation with enduring benefit" and "punishment"?

Bulow and Rogoff: Recontracting of Sovereign Debt

Bulow and Rogoff (JPE, 1989b): A Constant Recontracting Model of Sovereign Debt

Motivation:

- reputation is an unsatisfactory incentive for repayment
- focus on threat of sanctions as an incentive
- possibility to renegotiate debts is at the center stage

Difficulties:

- sanctions are off-equilibrium strategy
- hard to estimate empirically

Bulow and Rogoff (1989): Model Setup

Consumer behavior:

$$\max E \left\{ \sum_{i} \frac{C_{t+hi}^{D} + C_{t+hi}^{F}}{\left(1 + \delta h\right)^{i}} \right\}$$

h ... time interval between periods C_t^D , C_t^F are consumption of domestic good D, foreign good F

Technology: exogenous production $\overline{y}h$ of good D, which can be

- consumed
- ullet exported: quantity T_t yields $T_t P$ units of F, where P>1
- ullet stored at a "deterioration rate" of γ such that

$$S_{t+h} = (1 - \gamma h) S_t + \overline{y}h - C_t^D - T_t$$

in default: lenders impose sanctions that cost fraction eta of exports

Sovereign Borrowing Relationship

Current account balance:

$$C_t^F = T_t P \left(1 - \beta X_t \right) - R_t$$

where X_t indicator for default, R_t is size of repayments

Behavior of banks:

- ullet if borrowers default, seize fraction $lpha \leq eta$ of exports
- competitiveness yields zero profit condition:

$$E\left\{\sum_{i}\frac{R_{hi}+\alpha T_{hi}X_{hi}}{\left(1+rh\right)^{i}}\right\}=0$$

Incentive Compatibility Constraint

Punishment device for default: seize fraction β of export revenue:

- if $\beta P > P 1$: autarky is optimal
- if $\beta P < P 1$: exporting and letting creditors seize β is optimal

Definition (Incentive compatibility constraint, no bargaining)

The country's credit limit is given by

$$\mathfrak{R} \leq \min\left\{\beta P, P-1\right\} \cdot \frac{\overline{y}}{r}$$

Note:

- if bank could make a take-it-or-leave-it offer, this would be the equilibrium
- ullet in practice: this is not time-consistent ightarrow non-credible threat

 \Rightarrow Country and lender will engage in bargaining

Bargaining Game

Bargaining game:

- Borrowers cannot commit to future payments
 - \rightarrow only current payment can be contracted
- Since $\delta > r$, country never pre-pays for future benefit
- \Rightarrow Basic question: How much do I have to pay today so that banks let me trade free of sanctions for this period?

Banks and borrower make alternating offers over distribution q of wealth:

banks receive
$$q_t P$$
 $(\overline{y}h + S_t)$
borrower receives $(1 - q_t) P$ $(\overline{y}h + S_t)$

Nash Bargaining Solution

Nash Bargaining Solution following Rubinstein (1982):

$$q^{\mathsf{Nash}} = rac{\gamma + \delta}{2\gamma + \delta + r}$$

Maximum level of repayments:

$$R = \min \left\{ \frac{\gamma + \delta}{2\gamma + \delta + r}, \beta, \frac{P - 1}{P} \right\} \cdot P\overline{y}$$

→ Three different repayment regimes

Regions of Repayments

3 Different Repayment Regimes:

- Bargaining region:
 - country receives $P\overline{y} \frac{\gamma + r}{2\gamma + \delta + r}$
 - banks receive $P\overline{y} \frac{\gamma+\delta}{2\gamma+\delta+r}$
- Autarky-constrained region:
 - arises if gains from trade are relatively small
 - banks make offer for repayment of $(P-1) \, \overline{y} \varepsilon$
 - banks' recovery of debt very sensitive to fluctuations in P
- Punishment-constrained region:
 - arises if punishment relatively small
 - ullet banks make offer for repayment of $eta P \overline{y} arepsilon$
 - NOTE: ability to punish does not affect equilibrium outside this area

Maximum Sustainable Debt Level

Maximum sustainable debt level $\mathfrak{R} = NPV(repayments)$:

$$\mathfrak{R} = \min \left\{ \frac{\gamma + \delta}{2\gamma + \delta + r}, \beta, \frac{P-1}{P} \right\} \cdot \frac{P\overline{y}}{r}$$

(any loan beyond this amount would never be repaid)

NOTE: since $\delta > r$, country will immediately jump to \Re and make repayments forever after

Effects of higher interest rates on \Re :

- higher discount rate applied to calculate NPV(repayments)
- banks become more impatient bargainers
- → equilibrium with lower debt ceiling

Involvement of Creditor Country Government

If gains from trade are important for creditor country:

- Banks and borrowers rationally anticipate bailout payments
- \bullet Credit limit \mathfrak{R} is increased
- Bailout constitutes transfer from taxpayers in creditor country to borrowing country (banks earn zero profits!)
- Creditor country government would like to commit not to make payments, but commitment often not credible
- Forms of side payments:
 - write-down of official debts
 - extension of new loans by government
 - funding for multilateral institutions
 - tax breaks for banks that suffer losses

Atkeson (1991): Moral Hazard and Repudiation

Atkeson (Econometrica, 1991): International Lending with Moral Hazard and Risk of Repudiation

Common stylized facts about emerging market economies:

Indebted countries who are hit by an adverse shock

- lose access to international capital markets
- are asked to repay existing loans
- → current account reversals, financial crises

Contrast: complete market models:

- countries should be able to insure costlessly
- perfectly smooth consumption

Atkeson (1991): Moral Hazard and Repudiation

Atkeson's Solution:

Observed pattern of international capital flows results from optimal contract under 2 imperfections:

- Moral hazard:
 - lenders cannot observe if loans were invested or consumed
 - low output is signal that past investment was low
 - optimal contract specifies repayment in low states
 - this imposes fall in consumption and investment as a penalty
 → moral hazard problem solved
- Risk of repudiation:
 - limits the size of repayments that can be demanded
 - imposes limit on maximum amount of debt provided

Quantitative models of emerging market borrowing

Main issues in the quantitative analysis of EM borrowing:

Joint analysis of:

- high debt levels
- equilibrium default
- volatile interest rates
- pro-cyclical capital flows
- large economic fluctuations

Quantitative analysis of emerging market borrowing

Cristina Arellano (2008): Default Risk and Income Fluctuations:

Main difficulty: Why does default occur in recessions?

- in Eaton-Gersovitz: highest incentives for default in good times
- here: uncontingent bonds imply debt rises during recession,
 up to a point where debt service causes net capital outflows
- outflows are more costly in recession
 - → higher incentive to default
 - → higher interest rates
- quantitative specification requires higher [exogenous] default cost in boom times:

$$c^D = \max\{y, \hat{y}\}$$

Quantitative analysis of emerging market borrowing

Vivian Yue (2006): Sovereign Default and Debt Renegotiation:

Main insight: Debt renegotiation increases sustainble debt levels

- recovery rates based on Nash bargaining (Bulow-Rogoff...)
- in lower states of nature: lower recovery
 - → higher default risk
- recovery rate is an additional market clearing instrument
- increases counter-cyclicality of default risk and interest rates

Calvo (1988): Servicing the Public Debt

Calvo (AER, 1988): Servicing the Public Debt: The Role of Expectations

Model Setup:

- two time periods: t = 0, 1
- two types of agents: consumers and government

Government:

- in period 0, government borrows b and promises to repay $R_b b$
- in period 1, government repudiates a proportion $\theta \in [0,1]$ and incurs at deadweight cost $\alpha < 1$ per unit repudiated
- ullet outside option to invest in capital k at fixed rate of return R

$$\rightarrow (1-\theta) R_b = R$$

• budget constraint of the government:

$$x = (1 - \theta) bR_b + g + \alpha \theta bR_b$$
 (Gvt.BC)

32 / 46

Consumer budget constraint:

$$c = y - z(x) + kR + (1 - \theta) bR_b - x$$
 (C.BC)

where z(x) is a convex deadweight loss from taxation

from (Gvt.BC), the repudiated debt satisfies

$$\theta b R_b = \frac{b R_b + g - x}{1 - \alpha}$$

In period 1, a time-consistent government takes bR_b as given

Maximizing consumption c w.r.t. x gives

$$FOC\left(x
ight): \;\; z'\left(x
ight)=rac{lpha}{1-lpha} \;\; o \;\; ext{defines unconstrained } x^*$$

x satisfies the govt. budget constraint, i.e. $\theta \in [0,1]$, if

$$g + \alpha bR_b \le x \le g + bR_b$$

Period 1 Reaction Function:

Choice of best response x as a function of R_b \rightarrow optimal repudiation is increasing function of R_b

Period 0 Equilibrium:

consistency condition combining govt. budget constraint and investor participation constraint $(1-\theta) R_b = R$:

$$x = g + (1 - \alpha) bR + \alpha bR_b$$

 \rightarrow defines feasible combinations of (x, R_b)

3 Possibilites:

if $x^* > g + bR$: two equilibria

if $x^* = g + bR$: unique equilibrium with $R_b = R = \underline{R}$

if $x^* < g + bR$: no debt issuance possible

Determination of Equilibrium in Period 0:

Total Consumption:

$$c = y - z(x) + (k+b)R - x$$

Case of Multiple Equilibria:

in good equilibrium: no repudiation, $R_b = R$, x = g + bR in bad equilibrium: partial repudation, $R_b > R$, $x = x^*$

→ welfare-inferior

Note: x^* is an increasing function of α

- \rightarrow for low α , no debt can be sustained
- ightarrow costly lpha makes bad equilibrium more costly, but it still exists

Possible solution: refuse to sell bonds at $R_b > R$

Money and Nominal Debt:

we can interpret inflation as partial repudiation

- redefine $R_b = 1 + i$
- ullet denote price levels as P_0 and P_1 and $\pi=rac{P_1-P_0}{P_0}$
- ullet real return is $P_0/P_1\cdot R_b=(1- heta)\,R_b$ so $heta=rac{\pi}{1+\pi}$
- ullet money demand: $M/P=\kappa
 ightarrow {
 m seigniorage}$ revenue $\kappa heta$

Government budget constraint:

$$x = (1 - \theta) bR_b + g - \kappa \theta$$

Consumption, reduced by convex inflation cost $\Re(\theta)$:

$$c = y - z(x) + kR + (1 - \theta) bR_b - x - \kappa\theta - \Re(\theta)$$

First-Best Equilibrium (under commitment):

$$\min_{\theta} z \left(g + bR - \kappa \theta \right) + \Re \left(\theta \right)$$

ightarrow defines $heta^{ extit{fb}}$ via FOC $z'\left(x
ight)\kappa=\mathfrak{R}'\left(heta
ight)$

Note: consumption is lower the higher inflation

Second-Best Equilibrium (time-consistent – optimizing in pd 1):

$$\min z \left(g + b \left(1 - \theta\right) R_b - \kappa \theta\right) + \Re \left(\theta\right)$$
$$FOC \left(x\right): \ z'\left(x\right) \left(bR_b + \kappa\right) = \Re' \left(\theta\right)$$

ightarrow defines $heta^{sb}> heta^{fb}$ which satisfies $\partial heta^{sb}/\partial(bR_b)>0$ and $\partial heta^{sb}/\partial g>0$

Multiple Equilibria in Monetary Example:

Fiscal Challenges to Monetary Dominance in the Euro Area

Two (caricature) views on European debt crisis:

- Worthern View: interest rate spreads on Southern debt
 - reflect default risk
 - are desirable to provide incentives for consolidation
- "Southern View:" interest rate spreads on Southern debt
 - reflect self-fulfilling bad equilibrium
 - could easily be avoided by lender-of-last-resort
 - ightarrow actually emergency lending only off equilibrium

Contribution:

- "Southern View" ignores non-zero possibility of default
- "Northern View" ignores difficulty of adjustment with excessive spreads → incentives may actually weaken

Background (Sargent and Wallace, 1981):

Monetary dominance:

- monetary authorities control inflation (leader)
- fiscal authorities take seigniorage as given and implement feasible fiscal path to ensure solvency (follower)

Fiscal dominance:

- fiscal authorites choose spending path (leader)
- monetary authorities provide seigniorage revenue to ensure solvency (follower)

Model Setup:

- 2 periods t = 1, 2 (short & long term)
- ullet central bank targets $\pi=0$
- ullet fiscal authority needs to roll over debt d_1 at t=1

$$(1+i)\,d_1=d_2$$

• government budget constraint at t = 2 is

$$\underbrace{(1-h)}_{\text{possible haircut}} rd_2 = \underbrace{b}_{\text{fiscal balance}} + \underbrace{s(\pi)}_{\text{seigniorage}}$$

where r is risk-less real interest rate

ullet fiscal balance b needs to adjust to debt to avoid haircut/inflation

Possibility of Debt Crises:

- probability $P\left(b\right)$ that fiscal authorities fail to do so satisfies $P\left(\underline{b}\right)=0,\ P\left(\bar{b}\right)=1$ and $P'\left(b\right)>0$ in between
- two adjustment possibilities:
 - probability μ : default/haircut: $1 h = b/rd_2$
 - probability 1μ : inflation: $s(\pi) = rd_2 b$
 - $\rightarrow \mu$ is a measure of monetary credibility
- participation constraint of investors:

$$(1+i)[1-\mu hP(b)] = 1+r \text{ or } 1+i = \frac{1+r}{1-\mu hP(r(1+i)d_1)}$$

- \rightarrow both sides of equation are increasing in i
- → possibility of Calvo-style multiple equilibria

Multiple Equilibria:

Possibility of Debt Crises:

- if $P(rd_1) = 0$ then committing to $\mu = 0$ (lending-of-last-resort) rules out default and will be off-equilibrium
 - \rightarrow no monetization needs to occur
- if $P(rd_1) > 0$ then
 - if μ is high (hard monetary dominance): it is impossible to roll over debt at t=1 \rightarrow immediate default, no possibility of fiscal adjustment
 - if μ takes on intermediate values: some adjustment, some inflation risk BUT: locally, higher μ makes inflation more likely (greater interest rate implies more debt)
 - ullet if μ is low: there is still risk that inflation will result
 - \rightarrow parameter μ determines trade-off between default/inflation
 - → in terms of welfare, intermediate values preferable

